A Theory of Scientific Terminlogy

The theory consists of concepts (basic and defined), postulates, formation and transformation rules, principles and a bridging rule.

a) Basic concepts: concept, expression

b) Postulate 1: Q, L, M, C, T, K, A, W, B, F, Z, H, R, X, N, P, S are conceptual periods.

Postulate 2: h, j, d, v, g, s, e, m, x, y, z, t, w, l, u, k, i, q, a, c, f, p, n are conceptual bonds.

Postulate 3: h, o, j, d, v, r, g, s, e, m, x, y, z, t, w, l, u, k, I, q, a, b, c, f, p, n are conceptual groups.

c) Formation rule: If o_1 and o_2 are conceptual periods and Ω is a conceptual bond, then o_1 Ω

o₂ is a well-formed formula.

d) Transformation rules (TR1-4)

TR1:
$$o_1 \cap o_2 = o_1 \cdot o_1 + o_2 \cdot o_2$$

TR2: $o_1 \cap o_2 = o_1[o_2 \cdot o_2] \cdot o_1 \cap o_2 = o_2(o_1 \cdot o_1) \cdot o_2$

where \aleph_1 and \aleph_2 are conceptual groups.

TR3: $o_1 \square o_2$ is replaceable with C, Q or o, where o is co-periodic with either o_1 or o_2 . Symbolically,

 $[o_1 \Omega o_2] \delta [C d Q] d o$ TR4: $[o_1 \Omega o_2] \delta o h Q$

- **f)** Principle 1: A conceptual equation is set up in accordance with the conceptual order of the union.

<u>Principle 2:</u> In a conceptual union, all concepts are conserved.

<u>Principle 3:</u> All scientific concepts are formalised in the conceptual calculus based on (a)-(e).

g) Bridging rule: An expression qualifies for term status if and only if it accords with the Pegitosca Criterion, i.e.

$$\varpi$$
 (P, E, G, I, T, O, S, C) + Ψ (A) = ι